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The mathematical consequences of a few simple scaling assumptions regarding the
effects of compressibility are explored using a singular perturbation idea and the
methods of statistical fluid mechanics. Representations for the pressure–dilatation
and dilatational dissipation appearing in single-point moment closures for compress-
ible turbulence are obtained. The results obtained, in as much as they come from
the same underlying procedure, represent a unified development for both dilatational
covariances. While the results are expressed in the context of a statistical turbulence
closure they provide, with very few phenomenological assumptions, an interesting
and clear mathematical model for the ‘scalar’ effects of compressibility. For homo-
geneous turbulence with quasi-normal large scales the expressions derived are – in
the small turbulent Mach number squared isotropic limit – exact. The expressions
obtained contain constants that have a precise physical significance and are defined
in terms of integrals of the longitudinal velocity correlation. The pressure–dilatation
covariance is found to be a non-equilibrium phenomenon related to the time rate
of change of the kinetic energy and internal energy of the turbulence; it is seen to
scale with α2M2

t εs[Pk/ε − 1](Sk/εs)
2. Implicit in the scaling is a dependence on the

square of a gradient Mach number, S`/c. A new feature indicated by the analysis is
the appearance of the Kolmogorov scaling coefficient, α, suggesting that large-scale
quantities embodied in the well-established ε ∼ ũ3/` relationship provide a link to
the structural dependence of the effects of compressibility. The expressions for the
dilatational dissipation are found to depend on the turbulent Reynolds number and
scale as M4

t (Sk/εs)
4R−1

t . The scalings for the pressure–dilatation are found to produce
an excellent collapse of the pressure–dilatation data from direct numerical simulation.

1. Introduction
Compressible shear layers are encountered in many practical applications ranging

from supersonic injectors for mixing, to entrainment in gas turbines and to scramjet
combustion in hypersonic vehicles. They play a role in the generation of noise from
jet and rocket engines. There are several features of these shear layers important to
the mixing problem that cannot be predicted with current computational models.
The compressible mixing layer has a growth rate much lower than its incompressible
counterpart (Papamoschou & Roshko 1988; Bradshaw 1977). The effects of compress-
ibility also contribute to substantial reductions in turbulence levels (Elliott & Samimy
1991), and reductions of the turbulent shear stress (Blaisdell, Mansour & Reynolds
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1991; Sarkar 1995) while increasing levels of normal stress anisotropy (Goebel &
Dutton 1991; Elliot, Samimy & Arnette 1995; Vreman, Sandham & Luo 1996; and
Simone, Coleman & Cambon 1997). The reviews by Lele (1994), Gutmark, Schadow
& Yu (1995), and Spina, Smits & Robinson (1994) expand on this subject.

An analytical development appropriate to high-Reynolds-number and high Mach
number transversely sheared flows with small bulk dilatation and low M2

t are the
subject of this article. These restrictions are satisfied in a large number of transversely
sheared flows ranging from simple shear layers of theoretical interest (Papamoschou
& Roshko 1988), to complex shear layers found in supersonic mixing enhancement
(Gutmark et al. 1995). Such flows, important in mixing enhancement and noise
reduction, are associated with the different nozzle shapes or flow configurations
such as multiple jets, coaxial jets, countercurrent mixing layers, ramped nozzles,
normal/tangential injection or vortex generators. In these supersonic shear layers
a Mach number based on the fluctuating velocity is small: a Mach 4 mean flow,
for example, with a turbulence intensity of 8% has a turbulent Mach number of
Mt = 0.32. The square of this turbulent Mach number, the appropriate perturbation
expansion parameter arising from the Navier–Stokes equations, M2

t = 0.1, is small
and allows a perturbative approach with analytical results.

In the context of single-point two-equation turbulence closure methods, compress-
ibility effects due to the fluctuating divergence explicitly appear in two terms in the
kinetic energy equation: the pressure–dilatation, 〈pd〉, and the variance of the dilata-
tion, 〈dd〉, which is related to what has come to be called the compressible dissipation,
εc = 4

3
ν〈dd〉. The pressure–dilatation and the dilatational dissipation appear in the

turbulent energy equation

ρ̄
D

Dt
k = ρ̄Pk − ρ̄εs + 〈pd〉 − ρ̄εc + Tk (1)

and, with opposite sign, in the internal energy equation,

ρ̄cv
D

Dt
T = PT − 〈pd〉+ ρ̄εs + ρ̄εc + TT , (2)

here written in terms of the mean temperature with a constant cv . The dilatational
covariances represent an irreversible, εc, and reversible transfer, 〈pd〉, of energy between
the mean internal energy field and the fluctuating kinetic energy field as shown in
figure 1. (A similar figure is given in Huang, Coleman & Bradshaw 1995.) Interchanges
of energy between the mean kinetic energy and mean temperature, involving the
mean pressure–dilatation and viscous heating do not require closure. Pk represents
the production, −{vivj}Vi,j , and the Tk and TT represent transport terms. Upper-case
letters represent mean values while lower-case letters denote fluctuating values except
in the case of the mean density, ρ̄. The angle brackets represent a Reynolds average
and the curly brackets indicate a Favre average. In addition to the articles already
mentioned, additional insight into these quantities can be found in the studies of
Durbin & Zeman (1992), Zeman & Coleman (1993), Zeman (1993), Erlebacher et al.
(1990), Sarkar (1992), Sarkar, Erlebacher & Hussaini (1991a), Sarkar et al, (1991b),
Blaisdell et al. (1991), Blaisdell & Sarkar (1993).

It is useful to give a simplified overview of what is currently believed, in the
context of a statistical closure, to be the nature of the effects of compressibility.
In this context the instantaneous dynamics are averaged and their net cumulative
effect is found in several different terms in the moment equations. The net effects
of compressibility, as currently understood and as appearing in the energy budget
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Figure 1. Energy transfers in compressible turbulence.

are manifest through: (i) the dilatational dissipation, εc, (ii) the pressure–dilatation
covariance, 〈pd〉, (iii) reductions in shear anisotropy, b12 accompanied by increases
in the streamwise the anisotropy, b11 and decrease in the transverse anisotropy, b22,
and (iv) changes in the relative strain rates, Sk/ε, characterizing a compressible flow.
Here bij = {vivj}/2k− 1

3
δij is the anisotropy tensor. For the homogeneous flows there

is very little difference between a Favre average and a Reynolds average (indicated
by the angle brackets). These several effects influence the growth rate of k. Defining
a non-dimensional growth rate of k for homogeneous shear turbulence as λ = k̇/Sk
and rearranging the k̇ equation for a homogeneous shear produces

λ =
k̇

Sk
= −2b12 −

ε

Sk
+
〈pd〉
Sk
− εc

Sk
= −λb − λε − λpd − λεc . (3)

In the equation the overdot represents a time derivative. The importance of the effects
of compressibility in direct numerical simulations (DNS) of homogeneous shear can
be ordered, approximately, as λεc < λpd < λb. Too little is known about the effects
of compressibility on λε to say anything definitive. This article investigates λpd and
λεc due to the scalars 〈pd〉 and 〈dd〉 appearing in the energy budget; one might call
these the scalar aspects of the effect of compressibility. This has also been called,
quite sensibly, an ‘energetic’ approach to the effects of compressibility (Simone et al.
1997).

Dilatational dissipation

Work by Zeman (1990) began by looking at the dilatational dissipation. It was
expected to be an important feature of compressible turbulence in hypersonic flows
in which it appears as an additional dissipative mechanism in the turbulence energy
equation. Since Zeman’s early contributions, work has focused on more modest
supersonic flows; the dilatational dissipation, once thought to be responsible for the
full reduction of the mixing in the mixing layer (Sarkar et al. 1991a, b; Sarkar &
Lakshmanan 1991) now appears to be a small portion of the stabilizing effects as
indicated in homogeneous shear DNS (Blaisdell et al. 1991; Sarkar 1995), for this
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class of flows. This is consistent with more recent results of Vreman et al. (1996) and
Simone et al. (1997).

Pressure–dilatation

Sarkar (1992) has since found that, for homogeneous shear DNS, the pressure–
dilatation covariance is more important than the dilatational dissipation. This is
consistent with the present analytical results – the dilatational dissipation is found
to scale with M4

t and inversely with the Reynolds number. The present results also
indicate that the pressure–dilatation scales with the magnitude of the departure from
equilibrium. It is for this reason that Vreman et al. (1996) reports a negligible pressure–
dilatation: the flow that is the subject their observations is stationary (Ristorcelli
1995). Of the many fully turbulent simple flows the homogeneous shear is arguably
the one with the largest departure from equilibrium and the pressure–dilatation is
not negligible. The importance of the pressure–dilatation will depend on the flow.

The dilatational effects investigated in this article are scalar and reduce the Reynolds
stress through the reduction of k in the evolution equation for k through the agencies
of 〈pd〉 and εc. These dilatational covariances are not the most important effects of
compressibility, and do not explain the substantial decrease of k seen in select flows
as discussed below. They are also not, in the homogeneous shear, negligible effects:
in the DNS of Blaisdell (1996, personal communication) they are seen to be of the
order of 5–10% of the dissipation.

Structural anisotropy

In homogeneous shear DNS, Sarkar (1995) has studied the effects of compressibility
on the ‘structural’ anisotropy as indicated by the anisotropy tensor bij = {vivj}/2k −
1
3
δij . His results and arguments suggests that the stabilizing effects of compressibility

are associated with a decrease in b12 and this can be related to an increase in the
gradient Mach number, S`/c. It is possible to see a similar reduction in b12 in the
inhomogeneous shears of Elliott & Samimy (1990), Goebel & Dutton (1991), Elliot
et al. (1995). A reduction in b12 is also seen in the homogeneous DNS of Blaisdell
et al. (1991) where it appears that a combination of increasing compressibility and
larger relative strain results in anisotropies notably different from that found in
incompressible flows (Abid 1994; Speziale, Abid & Mansour 1995). The decrease
in k appears to be linked to the decrease in the production of the turbulent shear
stress, P12 ∼ −(b22 + 1

3
)V1,2 due to a sizeable decrease in b22. These structural effects

of compressibility, as described in Vreman et al. (1996) and Simone et al. (1997),
are larger and are not addressed. The structural effects on the Reynolds stress,
{uv} = 2b12k, occurring through the reduction of b22 and b12 will require a compressible
representation of the pressure–strain covariance. The thesis by Adumitroaie (1997)
offers one possible procedure to this end.

The present objective is to investigate the consequences of a pertubative approach
for the effects of compressibility in an investigation of 〈pd〉 and εc. This will provide (i)
an asymptotic benchmark to which fully nonlinear developments can be compared,
(ii) delineate analytically the nondimensional parameters and scalings that play a
roll in compressible flows, (iii) lay-out a procedure from which to obtain represen-
tations for the more difficult effects associated with the pressure–strain covariance
and (iv) take a preliminary step towards a computational model for a portion of
the effects of compressibility relevant to a sizeable class of high-speed aeronautical
flows.

This article is primarily analytical. While numerical validation of the analysis is
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provided space and subject matter indicate that this is more satisfactorily addressed in
an article devoted to the details of turbulence modeling and validation issues (Ristor-
celli 1997). The results presented herein are a rigorous mathematical consequence of
a few very reasonable assumptions. The present approach is to be contrasted to other
analytical developments, for example, Durbin & Zeman (1992), Cambon, Coleman
& Mansour (1993) or Simone et al. (1997) which treat the linear rapid distortion
problem in which the mean rate of strain is much higher than the self-straining by
the turbulence. The present approach treats the nonlinear problem; the fluctuating
strain, associated with the nonlinear turbulence interactions over the range of scales
that occur at a high Reynolds number, is large in comparison to the mean strain
or rotation. This includes the situation in which nonlinear effects have had time to
respond to changes in mean gradients. This methodology is expected to be appli-
cable to a variety of tranversely sheared flows as might occur in situations where
the control of mixing or acoustics is important. This methodology will not apply to
RDT flows such as those treated Durbin & Zeman (1992). The intent is to produce
analytical models for some effects of compressibility providing some insight into the
nature of the effects of compressibility in the nonlinear regime. The intent is also
to describe and validate a rational and systematic procedure for understanding the
effects of compressibility for compact (see below) low fluctuating Mach number flows
of engineering interest. That the more important pressure–strain effect is not first
treated is due to the complexity of that modelling using a pseudo-sound approach –
a procedure that first requires validation before such a substantial effort can proceed
with any certainty.

The present approach for the effects of the fluctuating dilatation differs from the
approaches of Zeman or Sarkar. In short: a low turbulent Mach number expansion
of the equation of state, the Navier–Stokes, the continuity and wave equations is
conducted. At low Mt the problem is recognized as having two relevant length scales
an inner scale: `, associated with the turbulence field, and an outer scale λ ∼ `/Mt

associated with an acoustic radiation field surrounding and generated by the vortical
motion. The perturbation development produces an algebraic constitutive equation,
on the inner scale, for the fluctuating dilatation. Taking the relevant moments of the
expression produces constitutive relations for 〈pd〉 and 〈dd〉. Assuming homogeneity
and quasi-normality, expressions without any undefined constants are obtained for
〈pd〉 and 〈dd〉.

This article is organized as follows: governing equations, analysis, discussion of im-
plications of the results and delineation of the limitations and assumptions. Section 2
gives a simple heuristic picture of the physics after which equations consistent with
the physics are derived. In §3 the assumptions of homogeneity and quasi-normality
are exploited in obtaining leading-order analytical expressions for the desired covari-
ances. The methods of statistical fluid mechanics, following the inceptional works of
von Kármán & Howarth (1938), Batchelor (1951), Kraichnan (1956), and Proudman
(1952), are relied on extensively. As a byproduct of the subsection on the rapid
pressure–dilatation correlation a leading-order expression for the pressure-variance
in an arbitrary three-dimensional mean flow is derived – this is a generalization of
Kraichnan’s (1953) result. This is followed in §4 by a description, in the context of
a few simple flows, of the consequences of the results; issues such as the Reynolds-
number scaling of the compressible dissipation and the gradient Mach number are
discussed. In §5 the justification and limitations of the assumptions made in the ana-
lytical section, which may appear to have been given short shrift in earlier sections,
are described in greater detail.
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2. Governing equations
It is useful to keep in mind one essential and central piece of physics that forms

the lynchpin of the pseudo-sound theory and makes the present method and results
possible: in the near field of a compact acoustic source the fluid behaves as if it
were incompressible. This observation appears to have been first made by Landau &
Lifshitz (1985) and is a cornerstone in the method of matched asymptotic expansions
in acoustics. This is a consequence of the fact that the Laplacian operator in the wave
equation, when scaled on the time and length scales of the turbulence, is the most
singular operator. This fact is recognized in acoustics in problems involving compact
sources, low-frequency motions, or acoustic fields near singularities.

A few ideas form the foundation of the present pseudo-sound analysis for the
dilatational covariances:

Compact source

It is assumed that the turbulence produces the pressure and density fluctuations in
the medium; the frequencies of the compressible disturbances are then the same as
the frequencies of the turbulence, c/λ ∼ ũ/`. The characteristic velocity fluctuation
scale is indicated by ũ. The problem is a singular perturbation problem: there is
a correlation length scale associated with the fluctuations of the turbulence, `, and
a length scale λ ∼ `/Mt associated with the propagation of pressure and density
fluctuations. Here Mt = (2k/3)1/2/c is the turbulent Mach number where k = 1

2
〈ujuj〉

and c2
∞ = γP∞/ρ∞ is the sound speed. Associated with the low-Mt assumption which

leads to the two disparate scales is what is called, in aeroacoustics, the compact-source
assumption: a turbulent eddy is small with respect to the length scale of its acoustic
radiation. Closely related to these two length scales are two time scales: one associated
with the convective modes of the flow, say τt ∼ `/ũ, and the other with the sound
crossing time, τc ∼ `/c – the time it takes for information to cross a typical length
scale of the turbulence. Note that τt/τc ∼Mt.

Convective and propagating pressures

Two pressures, an ‘acoustic’ pressure which propagates and a ‘pseudo-pressure’
associated with the convective motions of the fluid, are distinguished. The term
‘pseudo-pressure’ was first coined by Blokhintsev (1956) as quoted in Ribner (1962).
The pressure fluctuations in a fluid satisfy, within the adiabatic approximation, the
following wave equation (Lighthill 1952):

c−2
∞ p,tt−p,jj = 22p = (ρuiuj),ij (4)

where p represents the deviations of the fluid pressure from its reference value.
Solutions to this equation are composed of the homogeneous solution, which obeys
the sourceless wave equation, 22p = 0, and the wave equation with source due to
turbulent fluctuations. Following Ribner (1962) the fluid pressure is decomposed into
convective and propagating parts p = pc + pp where pc satisfies pc,jj = −(ρuiuj),ij and
therefore pp satisfies

c−2
∞ pp,tt−pp,jj = −c−2

∞ pc,tt . (5)

In the region of the fluid turbulence the pseudo-pressure is much larger than the
propagating pressure. Far from the vortical portions of the motion, the propagating
pressure is the major portion of the pressure field. The pseudo-pressure decays quite
rapidly (Ribner 1962). Thus there is an inner region of scale ` in which the major
portion of the pressure is associated with the vortical motions and an outer region, in
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which the much smaller propagating acoustic pressure is the major component of the
pressure field. In the inner region of scale ` � λ, the sound speed is effectively infinite:
on a time scale of the flow, signals are felt throughout the region of scale ` effectively
simultaneously. To obtain the dilatational covariances with the dilatation only the
inner solution of the singular perturbation problem, in which the pseudo-pressure
dominates, is required.

Compact flow

The use of the inner solution is a useful approximation in mediums that are finite or
infinite in extent for covariances involving at least one fluctuating quantity that does not
propagate. Contributions to the covariances from regions outside of the correlation
length, the outer solution, are negligible. This point can be made by decomposing
pressure and dilatational field into portions associated with the local eddy, (p`, d`),
and those whose source is the vortical motions an integral length scale or more away,
(pu, du). The pressure–dilatation can then be written

〈pd〉 = 〈p`d`〉+ 〈p`du〉+ 〈pud`〉+ 〈pudu〉. (6)

The middle two terms, as they arise from portions of the flow that are not correlated,
are zero. The quantity 〈pudu〉 is not zero; it is, however, of order M2

t , with respect
to 〈p`d`〉 since pu in the local eddy is the acoustic pressure associated with a distant
(uncorrelated) eddy. Thus

〈pd〉 = 〈p`d`〉+ O(M2
t ). (7)

This is not the case for the variance 〈dd〉 as d is associated with a propagating field.
A similar argument produces

〈dd〉 = 〈d`d`〉+ 〈d`du〉+ 〈dud`〉+ 〈dudu〉 = 〈d`d`〉+ 〈dudu〉. (8)

The present local theory does not and cannot account for non-local contributions
represented by 〈dudu〉. It is for this reason that, in this article, the dilatational
dissipation will often be referred to as the ‘local dilatational’ dissipation as it is
assumed that 〈dd〉 = 〈d`d`〉. In the compact flow assumption 〈dudu〉 makes very
little contribution. These 〈dudu〉 terms are expected to be important in compressible
homogeneous DNS in which the flow domain is effectively infinite.

This is not the case for compact flows. Most flows of engineering interest are
compact flows. The compact flow assumption is a statement that the size of the
turbulent field, D, is small or on the order of the acoustic scale, D/λ 6 1. This
requires a low Mt; consider that D ∼ ` and that λ ∼ `/Mt, then D < λ and the flow
is compact. As most engineering flows, at low Mt, being only few integral scales wide
are compact flows, the contributions from 〈dudu〉 originating more than an integral
scale away, are expected to be negligible. In compact flows the primary contribution
to 〈dd〉 is 〈d`d`〉 for which the present analysis is valid.

Uniform convergence

It is required that the equations should, with bounded derivatives, uniformly
approach their incompressible form as the Mach number goes to zero. These facts
are used to produce the gauge functions in a perturbation expansion in which the
small parameter is related to the Mach number of the velocity fluctuations.
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The governing equations

The following equations are used to describe the portion of the flow of interest:

ρ,t +ukρ,k = −ρup,p , (9)

ρui,t +ρukui,k +p,i = 0, (10)

p/p∞ = (ρ/ρ∞)γ. (11)

The momentum and continuity equations can be combined to give the following
equation:

ρ,tt−p,jj = (ρuiuj),ij (12)

which becomes a wave equation for ρ or p if the gas law is used to eliminate one in
favour of the other. For clarity of exposition the viscous terms are not carried: they
can be shown to be of higher order for the compressible portions of the field, see
for example Zank & Matthaeus (1991). Since a spectral Mach number exhibits an
approximate wavenumber dependence of κ−1/3 the scales of the motion which contain
fluctuating dilatation modes will be, for a high-Reynolds-number flow, larger scales
of the motion than those most influenced by viscosity.

Perturbing about a reference state, (p∞, ρ∞), the non-dimensional forms of the
pressure and density are taken as p = p∞(1 + p′), ρ = ρ∞(1 + ρ′). The independent
variables are rescaled with the energy-containing length and time scales of the ‘inner’
fluctuating field: `/ũ and `. (Here ũ represents a characteristic scale for the fluctuating
velocity.) There will be no need for the outer expansion; our interest is in the effects
of compressibility on the vortical modes of the flow and not the acoustic propagation
problem. Dropping primes the equations become

ρ,t +upρ,p = − (1 + ρ)up,p , (13)

(1 + ρ)ui,t + (1 + ρ)upui,p + ε−2 p,i = 0, (14)

p− γρ = 1
2
γ(γ − 1)ρ2, (15)

ρ,tt− ε−2p,jj = [(1 + ρ)uiuj],ij , (16)

where ε2 = γM2
t and Mt = ũ/c∞ where ũ = 2k/3 = 〈ujuj〉/3 and c2

∞ = γP∞/ρ∞.
Note that the choice of time scales is determined by the energy-containing scales
of the motion. A meaningful balance, giving bounded derivatives on the velocity, is
established if p ∼ ε2. It then follows that ρ ∼ ε2 also. The conventional definition
of the Mach number, in accordance with the acoustics literature from which some
of our ideas are drawn, is used. It is the small parameter that emerges naturally in
the relevant non-dimensionalization of the compressible equations. This means that
Mt = (2k/3)1/2/c is a factor 0.577 smaller than the Mach numbers defined using
q2 = 〈ujuj〉, and Mt = q/c. Expansions of the form

p = ε2 [p1 + ε2p2 + . . . , (17)

ρ = ε2 [ρ1 + ε2ρ2 + . . . , (18)

ui = vi + ε2 [wi + ε2w2i + . . . (19)

are chosen. Inserting the expansions into the equations produces, to the lowest or
zeroth order, the incompressible equations

vi,t + vpvi,p +p1,i = 0, (20)

p1,jj = − (vivj),ij , (21)

γρ1 = p1, (22)
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where vi,i = 0. The correction for the compressibility of the flow does not involve a
wave equation on the inner spatial and temporal scales of the turbulence. The next
order equations are

ρ1,t + vpρ1,p = −wk,k , (23)

wi,t + vpwi,p +wpvi,p +p2,i = ρ1(vi,t + vpvi,p ), (24)

p2 − γρ2 = 1
2
γ(γ − 1)ρ2

1, (25)

−p2,jj = (wivj + wjvi + ρ1vivj),ij −ρ1,tt . (26)

In the near-field region, which is small with respect to an acoustic length scale,
the compressible pressure is felt, effectively instantaneously. Additional amplification
of some of these ideas can be found in the insightful paper by Crow (1970). This
completes the derivation of the evolution equations for the inner expansion. For the
single-point turbulence closures for compact flows, the outer solution, associated with
the sound propagation problem, is not required.

The zeroth-order equations show that the density fluctuations are given by the
pressure fluctuations, γρ1 = p1. The first-order inner expansion of the continuity
equation now becomes a diagnostic relation for the fluctuating dilatation,

− γd = p,t + vkp,k . (27)

The subscript on p1 has been dropped. Evidently one does not need a solution to
the evolution equation for the compressible velocity field, wi, to obtain its dilatation.
This is a very nice result† that forms the basis of the present pseudo-sound analysis.
The dilatation is diagnostically related to the local fluctuations of the pressure and
velocity; it is the rate of change of the incompressible pressure field following a
fluid particle. Constitutive relations for the pressure–dilatation and the variance of
the dilatational can be found by taking the appropriate moment of the fluctuating
dilatation equation to produce, dropping the subscript,

−2γ〈pd〉 = 〈pp〉,t + 〈vkpp〉,k , (28)

γ2〈dd〉 = 〈ṗṗ〉+ 2〈ṗvkp,k 〉+ 〈vkp,k vqp,q 〉. (29)

For a homogeneous or quasi-normal field the flux term 〈vkpp〉,k = 0. The compress-
ibility effects, as manifested in the dilatational covariances, have now been directly
linked, to leading order, to the solenoidal parts of the velocity field. Both Zeman
(1991a, b) and Sarkar et al. (1991) have derived similar looking equations for the
pressure dilatation. Their equations follow from a squaring of the Reynolds decom-
position of the continuity equation and ensemble averaging. Their results linked the
pressure–dilatation to the variance of the full pressure field. The present relation-
ship is substantially different: the perturbation analysis has shown that the major
contribution to the pressure variance field, at low Mt, is the pressure related to the
solenoidal portions of the velocity field. This pressure has been called the pseudo-
pressure (Ribner 1962; Ffowcs Williams 1969) and satisfies a Poisson equation for
which traditional methods of classical linear mathematics are available. This fact is
now exploited to obtain expressions for the dilatational covariances.

† A similar expression in different contexts with different assumptions has been obtained inde-
pendently by both Girimaji (1995, personal communication) and Crow (1970).
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3. Analysis
Analytical expressions for the isotropic portions of the pressure dilatation, and the

variance of the dilatation are now derived.

3.1. The pressure–dilatation in homogeneous isotropic turbulence

Expressions for the dilatational covariances for isotropic turbulence without mean
deformation are first obtained. This is analogous to the slow pressure component of
turbulence models for pressure–strain covariances. Batchelor (1951) has obtained a
representation for the pressure variance, 〈pp〉, in isotropic incompressible turbulence.
A simpler Green’s function method, following Kraichnan (1956), is used here. The
non-dimensional pressure satisfies the Poisson equation: p(x, t),jj = −(vivj),ij . The
two-point pressure variance obeys

〈p(x, t)p(x′, t)〉,jjp′p′ = 〈vivjv′pv′q〉,ijp′q′ (30)

which can be written in terms of the separation variable ri = x′i − xi. Following the
usual methods for translationally invariant random processes,

〈p(x, t)p(x′, t)〉,jjpp = 〈vivjv′pv′q〉,ijpq . (31)

The Green’s function for the equation is −(1/8π) | r′−r | and the solution is expressed
as

〈pp′〉 = − 1

8π

∫
〈vivjv′pv′q〉,ijpq | r′ − r | d3r′. (32)

Now 〈p(x, t)p(x′, t)〉 = 〈pp′〉(r). The quasi-normal assumption is used to relate the
fourth-order moments of the velocity field to its second-order moments. A discussion
of the adequacy of the quasi-normal assumption is relegated to §5 where all the
assumptions made in this analysis are addressed. The assumption allows

〈vivjv′pv′q〉 = 〈vivj〉〈v′pv′q〉+ 〈viv′p〉〈vjv′q〉+ 〈viv′q〉〈v′pvj〉. (33)

The definition for the correlation, 〈viv′j〉 = 2
3
kRij(r), where k = 1

2
〈vjvj〉, is used to

obtain

〈vivjv′pv′q〉,ijpq = 2 〈viv′p〉,jq 〈vjv′q〉,ip = 2 ( 2
3
k)2Rip,jqRjq,ip. (34)

Upon application of continuity, Rij ,j (r) = 0, the pressure variance becomes

〈pp′〉 = −2 ( 2
3
k)2 1

8π

∫
Rip,jqRjq,ip | r′ − r | d3r′. (35)

The expression is exact for a general Rij . It is virtually impossible to do these
integrations for a general Rij . The leading-order isotropic form of Rij is taken.
This procedure, as it is applied on subsequent occasions, is further discussed in §5.
The integral can then be written in terms of the longitudinal correlation function.
Following von Kármán & Howarth (1938), the longitudinal correlation, 〈v1(0)v1(r)〉 =
〈v1v1〉f(r) = 2

3
kf(r) = 2

3
kR11, allows the isotropic portion of the two-point correlation

to be written as Rij = −(rirj/2r)f
′ + (f + 1

2
rf′)δij . Following Batchelor’s (1951)

development, the fourth-order two-point correlation can be expressed as

Rip,jqRjq,ip = 2

[
2f′′2 + 2f′f′′′ +

10

r
f′f′′ +

3

r2
f′2
]

= 2
1

ξ2

d

dξ

[
1

ξ

d

dξ
(ξ3f′2)

]
. (36)
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The integrand can be written in terms of the scalar function f(ξ), where ξ = r/`
is the non-dimensional spatial coordinate such that

∫
f(ξ)dξ = 1. Inserting into

the integrand and applying integration by parts successively produces, returning to
dimensional variables, the Batchelor (1951) result:

〈pp〉 = 2 ( 2
3
k)2ρ2

∞

∫ ∞
0

ξf′2(ξ)dξ = 8
9
ρ2
∞k

2Is1, (37)

where Is1 =
∫ ∞

0
ξf′2(ξ)dξ. Inserting the result into the constitutive relation for the

pressure–dilatation, −2γ〈pd〉 = (D/Dt)〈pp〉, produces, in dimensional quantities, the
following expression for the slow pressure–dilatation:

〈pd〉s = − 2
3
Is1 (D/Dt) [ρ̄M2

t k]. (38)

Here D/Dt is the substantial derivative following a mean fluid particle. The reference
density and pressure have been replaced by the local mean density and pressure.

3.2. The dilatational variance in isotropic turbulence

The quasi-normal form of the constitutive relation for the variance of the dilatation
is

γ2〈dd〉 = 〈ṗṗ〉+ 〈vpp,p vqp,q 〉. (39)

Starting, once again, from the non-dimensional Poisson equation for the leading-order
pressure field, p(x, t),jj = −(vivj),ij , an equation similar to the two-point variance of
the pressure derived above can be obtained for the variance of the time derivative of
the pressure: thus

〈ṗ(x, t)ṗ(x′, t)〉,jjpp = 〈(vivj),t (v′pv′q),t 〉,ijpq = 4〈v̇ivj v̇′qv′p〉,ijpq (40)

after expanding the products of the time derivatives. The equation for the variance
becomes

〈ṗ(x, t)ṗ(x′, t)〉,jjpp = 4 〈v̇iv̇′p〉,jq 〈vjv′q〉,ip (41)

using the quasi-normal assumption. The fact that 〈v̇jv′q〉 = 0 for homogeneous
isotropic turbulence, as can be seen from the Navier–Stokes equations and application
of continuity, has been used. The tensor 〈v̇iv̇′j〉 can be written in terms of the correla-
tion function, 〈v̇iv̇′j〉 = 〈v̇v̇〉R1ij which can be rewritten in terms of the scalar correlation

function, f1, following the usual procedures as R1ij = −(rirj/2r)f
′
1 + (f1 + 1

2
rf′1)δij to

produce 〈v̇iv̇′i〉 = 〈v̇v̇〉[3f1 + rf′1] = 〈v̇v̇〉r−2(r3 f1)
′. For an isotropic tensor there is only

one scalar function, say 〈v̇v̇〉. This will be taken to be 〈v̇v̇〉 = 〈v̇1v̇1〉. The bi-harmonic
equation for the variance of the time derivative of the pressure becomes

〈ṗṗ′〉,jjpp = 8 2
3
k〈v̇v̇〉 1

r4

[
1

r3
(rf′f′1)

′
]′
. (42)

Using the Green’s function method and integrating by parts produces, in dimensional
form,

〈ṗṗ〉 = 4 ρ2
∞

2
3
k〈v̇v̇〉

∫ ∞
0

ξf′f′1 dξ. (43)

An expression for the two-point variance of the acceleration, 〈v̇v̇〉f′1 is required. Little
is known about the longitudinal correlation of the acceleration. The Navier–Stokes
equations can be used to obtain an equation relating the acceleration correlation,
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f1, to f, the longitudinal correlation of the velocity correlation.† The dynamical
equations of the inviscid portions of the motion, in the absence of a mean velocity
field, can be used to produce the following equation for the two-point covariance of
the acceleration:

〈v̇iv̇′i〉 = −ρ−2
∞ 〈pp′〉,jj −〈vivjv′iv′k〉,jk . (44)

The quasi-normal assumption for the last term on the right in the evolution equation
for the two-point acceleration produces

〈vivjv′iv′k〉,jk = [〈vivj〉〈v′iv′k〉+ 〈viv′i〉〈vjv′k〉+ 〈viv′k〉〈v′ivj〉],jk

= ( 2
3
k)2 1

r2
[r3 (ff′′ − 1

2
f′2 + (4/r)ff′)]′ (45)

after substituting in terms of the longitudinal correlation. For operations on functions
of r, the Laplacian can be written 〈pp′〉,jj = r−2(d/dr)(r2(d/dr)〈pp′〉) and the dynamical
equation for the two-point acceleration becomes, after one integration,

〈v̇v̇〉f1 = − 1

ρ2
∞

1

r

d

dr
〈pp′〉 − ( 2

3
k)2(ff′′ − 1

2
f′2 + (4/r)ff′). (46)

From the expression for the two-point covariances for the pressure (Batchelor 1951),
the following expression can be derived:

1

r

d

dr
〈pp′〉 = −4ρ2

∞
(

2
3
k
)2
∫ ∞
r

1

r′
f′2dr′. (47)

Inserting Batchelor’s expression in the equation for f1 and taking the derivative
produces the quantity required,

〈v̇v̇〉f′1 = −
(

2
3
k
)2

(
ff′′′ +

4

r
ff′′ +

8

r
f′f′ − 4

r2
ff′
)
. (48)

Inserting the expression for 〈v̇v̇〉f′1 into the variance, 〈ṗṗ〉=4ρ2
∞

2
3
k〈v̇v̇〉

∫ ∞
0
ξf′(ξ)f′1(ξ)dξ

produces

〈ṗṗ〉 = 4 ρ2
∞
(

2
3
k
)3 1

`2
Is2 =

9

α2
ρ2
∞
(

2
3
k
)2 ε2

k2
Is2 =

4

α2
ρ2
∞ε

2Is2, (49)

where Is2 =
∫ ∞

0
ξf′[ff′′′+(4/ξ)ff′′+(8/ξ)f′f′−(4/ξ2)ff′]dξ. The characteristic velocity

fluctuation will be taken to be ũ2 = 2
3
k and the Kolmogorov scaling ε = α( 2

3
k)3/2/`

has been used. This is the second phenomenological assumption made: the first is the
quasi-normal assumption. Both of these assumptions are discussed further in §5.

The fourth-order moments in the constitutive expression γ2〈dd〉 = 〈ṗṗ〉+〈vpp,p vqp,q 〉
are now treated. Beginning with the two-point statistic and writing it as a function of
the separation distance, ri,

〈vpp,p v′qp′,q′ 〉 = −〈vppv′qp′〉,pq
= −[〈vkv′q〉〈pp′〉+ 〈vpp〉〈v′qp′〉+ 〈vpp′〉〈v′qp〉],pq
= −〈vkv′q〉〈pp′〉,pq (50)

where continuity, 〈vpv′q〉,p = 0, and the fact that an isotropic vector is zero have been
used. Further manipulations and setting r = 0 produces

− 〈vkvq〉〈pp〉,pq = − 2
3
k〈pp〉,pp−2kbpq〈pp〉,pq (51)

† This development was indicated by Y. Zhou at ICASE.
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where bpq is the anisotropy tensor, bij = 〈vivj〉/2k − 1
3
δij . A theory including the

contribution of the anisotropy is possible but requires the pressure variance Hessian.
Expressing the two-point covariance in terms of its longitudinal correlation function
and performing the appropriate differentiations of 〈pp′〉 = 〈pp〉P (r) produces

− 2
3
k〈pp〉,pp = − 2

3
k〈pp〉3P ′′0 . (52)

The second derivative of Batchelor’s solution for the two-point pressure variance can
be used to show that P ′′0 = −(4/`2)Is3 where Is3 =

∫ ∞
0

(1/ξ)f′2dξ. The fourth-order
moment can be written as

〈vpp,p vqp,q 〉 = 2
3
k〈pp〉12

`2
Is3 = 16ρ2

∞( 2
3
k)2 k

`2
Is1I

s
3 =

54

α2
ρ2
∞( 2

3
k)2 ε

2

k2
Is1I

s
3. (53)

The earlier result for the pressure variance and the Kolmogorov scaling ε = α( 2
3
k)3/2/`

have been used. These results are substituted into the constitutive equation for the
variance of the dilatation – γ2〈dd〉 = 〈ṗṗ〉 + 〈vpp,p vqp,q 〉 – to obtain the following
simple expression for the slow portion of the variance of the dilatation:

〈dd〉s =
9

α2
M4

t

( ε
k

)2

[Is2 + 6Is1I
s
3]. (54)

The integrals are, typically, order-one quantities. Y. Zhou (1994, personal communi-
cation) has determined their value from high Reynolds number wind tunnel data.
These values are given in the Appendix. The compressible dissipation is defined as
ρ̄εc = 4

3
〈µ〉〈dd〉 and the model can be put in a form relevant to the kinetic energy

equation:

εsc =
16

3α2

M4
t

Rt
εs [Is2 + 6Is1I

s
3]. (55)

The traditional and physically meaningful definition of the turbulent Reynolds num-
ber (Tennekes & Lumley 1972), based on a characteristic velocity, ũ2 = 2

3
k, and the

Kolmogorov outer length scale, `, is used: Rt = ũ`/〈ν〉 = 4k2/9〈ν〉ε. This is a factor
9 smaller than the more recent definition adopted by the DNS community.

3.3. The pressure–dilatation due to mean velocity gradients

An expression for the pressure–dilatation in the presence of a general homogeneous
mean velocity gradient and no mean bulk dilatation is now derived. The constitutive
relation for the pressure–dilatation is

− 2γ〈pd〉 =
D

Dt
〈pp〉. (56)

The velocity field is partitioned according to the Reynolds decomposition Vi + vi; the
upper case denotes a steady mean velocity field with constant gradients, the lower case
will continue to indicate the fluctuating field. The mean strain and rotation tensors
are Sij = 1

2
[Vi,j +Vj,i ], Wij = 1

2
[Vi,j −Vj,i ]; W 2 and S2 denote the traces of the

squares of these matrices. The non-dimensional Poisson equation, p(x, t),jj = −(vivj),ij ,
now involves the mean velocity gradient:

p(x, t),jj = −(viVj + Vivj + vivj),ij .

Multiplying this equation by a similar Poisson equation for p(x′, t) and averaging
produces

〈p(x, t)p(x′, t)〉,j ′j ′qq = 4Vi,j Vp,q′ 〈vj ,i v′q,p′ 〉+ 〈vivjv′pv′q〉,ijp′q′ .
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The last term, which represents the slow pressure contribution, was obtained in a
previous section. Expressing the differential equation in terms of the spatial separation,
ri, produces a biharmonic equation for the two-point pressure variance

〈pp′〉,jjqq = 4Vi,j Vp,q 〈vjv′q〉,ip . (57)

The Green’s function method produces the following solution:

〈pp′〉(r) = 4Vi,j Vp,q
1

8π

∫
〈vjv′q〉,ip |r − r′|d3r′ = 4Vi,j Vp,q Ijqip(r). (58)

The expression for the pressure variance, at this point, involves no assumptions about
the two-point correlation function, 〈vjv′q〉 = 2

3
kRjq . The pressure variance is known

once a representation for the integral Ijqip is found. For a class of turbulent flows
a tensor polynomial in the anisotropy tensor is a suitable approximation for Ijqip.
Lumley (1970), Ristorcelli, Lumley & Abid (1995), Ristorcelli (1996) discuss issues
related to this assumption. Here, only the leading-order term in such a polynomial
will be retained for the purpose of understanding the physics and obtaining scalings
for the scalar effects of compressibility. Higher-order terms introduce an element of
empiricism while not changing, conceptually, any of the results. This is discussed in §5.
A fourth-order isotropic tensor with the proper symmetry and satisfying continuity,
Ijiip = 0 is

Ijqip = Ar1 [δjqδip − 1
4
(δjiδqp + δjpδiq)]

where

Ar1 =
2

15
Ijjii =

2

15

1

8π

∫
〈vjv′j〉,ii r′d3r′ =

1

15

2k

3
`2Ir1 . (59)

Expressing the integrand in terms of the longitudinal correlation in the normal-
ized coordinate, 〈vjv′j〉,ii = 2

3
k ξ−2[ξ3f′′′ + 7ξ2f′′ + 8ξf′]. The facts that 〈vjv′j〉 =

2
3
k[rf′ + 3f] = r−2(d/dr)(r3f) and, that in spherical coordinates, the Laplacian is

∇2 = r−2(d/dr)r2(d/dr) have been used. It is also possible to integrate by parts,
allowing the integrand to be expressed in lower-order derivatives for more accurate
computation from experimental data. Thus

Ar1 =
1

15

2

3
k`2

∫ ∞
0

ξ2[ξ2f′′′ + 7ξf′′ + 8f′]dξ

=
1

15

2

3
k`2

∫ ∞
0

ξ
d

dξ

(
ξ2 d

dξ

(
ξ−2 d

dξ
(ξ3f)

))
dξ

=
2

15

2

3
k`2

∫ ∞
0

ξfdξ =
1

15

2

3
k`2Ir1 . (60)

Note that the coefficient Ar1 has been related to a quantity related to the turbulence
– it is not an empirical coefficient. The leading-order solution for the rapid pressure
variance in an arbitrary three-dimensional mean velocity gradient is then expressed
as

〈pp〉r = 1
15
ρ2
∞

2
3
k`2 [3S2 + 5W 2] Ir1 . (61)

The integral has dimensions of a characteristic correlation area: the rapid pressure
contribution to the pressure variance will vary according to the spatial scale of the
turbulence, unlike the slow pressure contribution given above. This dependence on the
spatial scale was noted by Kraichnan (1956), who produced a leading-order expression
for pressure fluctuations in a unidirectional shear. The results here extend Kraichnan’s
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(1956) results for a simple shear to an arbitrary (three-dimensional) quasi-stationary
mean deformation.

The results are substituted into the constitutive equation and the rapid portion of
the pressure–dilatation covariance in dimensional variables becomes

〈pd〉r = − 1

30
Ir1

D

Dt

[
ρ∞

2
3
k
`2

c2
∞

3S2[1 + 5
3
R2]

]
, (62)

where R2 = W 2/S2. Note the appearance of the quantity S`/c∞; the dependence of
the compressibility effects on a deformation-rate Mach number have been indicated by
Lele (1994) and Sarkar (1995). The expression is recast in terms of the turbulent Mach
number and the rapid component of the pressure–dilatation covariance becomes

〈pd〉r = − 1

30
Ir1

D

Dt
[ρ̄M2

t `
2 3S2[1 + 5

3
R2]]. (63)

Two effects contribute to the pressure–dilatation covariance: one due to the rate
of change of kinetic energy (M2

t ∼ k) and the other due to changes in the area
of the correlation. Unlike the slow pressure–dilatation however, the rapid pressure–
dilatation does not always have the opposite sign to the growth of kinetic energy
but now depends on the rate of increase of the area of the correlation, `2. The well-
established Kolmogorov scaling ε = α( 2

3
k)3/2/` (see §5), where α is a flow-dependent

quantity, is used to close the expression:

〈pd〉r = − 1
30

( 2
3
)3Ir1 α

2 D

Dt
[ρ̄kM2

t Ŝ
2
[3 + 5R2]]. (64)

The quantities with a carat are the relative strain and rotation rates, e.g. Ŝ
2

= (Sk/ε)2.

3.4. The dilatational variances due to mean velocity gradients

In the constitutive relationship for the variance of the dilatation the time derivative
is replaced by the mean advective derivative, D/Dt = ( ),t +Vk( ),k . Carrying the
substantial derivative as part of the time derivative term involves no approximation
and follows quite naturally from the Reynolds decomposition. The development
preserves Galilean invariance. The quasi-normal form of the constitutive relation for
the pressure–dilatation is

γ2〈dd〉 = 〈◦p◦p〉+ 〈vpp,p vqp,q 〉. (65)

The small circle indicates the mean convective derivative; thus 〈◦p◦p〉 = 〈(Dp/Dt)
(Dp/Dt)〉.

For the convenience of the presentation the two contributions to the variance of

the dilatation will be denoted γ2〈dd〉1 = 〈◦p◦p〉 and γ2〈dd〉2 = 〈vpp,p vqp,q 〉. Applying
the Reynolds decomposition to the non-dimensional form of the Poisson equation for
pressure, p(x, t),jj = −(vivj),ij , and taking the appropriate derivatives and dropping the
terms quadratic in the fluctuating velocities (treated in an earlier section) produces

◦
p (x, t),jj = −(

◦
vi Vj + Vi

◦
vj),ij = −2Vi,j

◦
vj ,i . (66)

Multiplying this by the Poisson equation for
◦
p (x′, t) and averaging produces the

biharmonic equation for the two-point pressure covariance

〈◦p (x, t)
◦
p (x′, t)〉,j ′j ′qq = 4Vi,j Vp,q′ 〈

◦
vj ,i

◦
v
′
q,p′ 〉 = 4Vi,j Vp,q 〈

◦
vj
◦
v
′
q〉,ip (67)
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in terms of the separation variable, ri. The Green’s function solution procedure
produces the following representation for the two-point covariance:

〈◦p◦p
′
〉 = 4Vi,j Vp,q

1

8π

∫
〈◦vj
◦
v
′
q〉,ip |r − r′|d3r′ = 4Vi,j Vp,q Ijqip(r). (68)

It is the variance (at r = 0) that is required. The fourth-order tensor, neglecting
higher-order corrections for anisotropy, is represented as the isotropic tensor

Ijqip = Ar2[δjqδip − 1
4
(δjiδqp + δjpδiq)],

Ar2 =
`2

15

∫ ∞
0

〈◦vj
◦
v
′
j〉,pp ξ3dξ =

`2

15

2k

3
Ir2 .

 (69)

If the acceleration correlation were known it would be a simple matter to show

that the integrand is given by 〈◦vj
◦
v
′
j〉,ii = 〈

◦
v
◦
v〉[ξ3f′′′1 + 7ξ2f′′1 + 8ξf′1]ξ

−2. (For isotropic

functions 〈v̇v̇〉 = 1
3
〈vjvj〉 is arbitrary; it can be understood as 〈v̇v̇〉 = 〈v̇1v̇1〉.) This is

not the case and an expression for f1 in terms of f is required. The Navier–Stokes

equations are used to obtain an expression for the integral,
∫ ∞

0
〈◦vj
◦
v
′
j〉,pp ξ3dξ. Taking

the equation for − ◦
vi= vkVi,k +vkvi,k +p,i, and multiplying it by a similar equation for

◦
v
′
j , averaging and taking the trace produces, in the ri coordinate, gives

〈◦vj
◦
v
′
j〉 = −Vi,k Vi,q 〈vkv′q〉 − 〈pp′〉,jj −[Vi,k 〈vkv′qv′i〉,q +Vi,q 〈vkviv′q〉,k ]

−[〈pv′kv′i〉,ik +〈p′vivk〉,ik ]− [Vi,k 〈vkv′qv′i〉,q +Vi,q 〈vkviv′q〉,k ]

−〈vjvkv′qv′j〉,kq .

The two-point triple covariances are zero for homogeneous isotropic turbulence and
the fourth-order correlation was treated in a previous section. The equation yields,
after taking the Laplacian, the quantity sought:

〈◦vj
◦
v
′
j〉,pp = −Vi,k Vi,q 〈vkv′q〉,pp−〈pp′〉,jjpp . (70)

In a previous section it was shown that the two-point pressure variance satisfied the
biharmonic equation: 〈pp′〉,jjqq = 4Vi,j Vp,q 〈vjv′q〉,ip. Thus

〈◦vj
◦
v
′
j〉,pp = −Vi,k Vi,q 〈vkv′q〉,pp−4Vi,j Vp,q 〈vjv′q〉,ip , (71)

which upon multiplication by ξ3 and integration produces the desired result for∫ ∞
0
〈◦vj
◦
v
′
j〉,pp ξ3dξ in the definition of Ir2:

2
3
kIr2 = −Vi,k Vi,q Ikq − 4Vi,j Vp,q Ijqip (72)

and Ir2 is seen to be related to the two integrals, Ikq =
∫ ∞

0
〈vkv′q〉,pp ξ3dξ, and

Ijqip =
∫ ∞

0
〈vjv′q〉,ip ξ3dξ. The isotropic portions of these tensors are related to an

earlier integral, Ir1, defined in the previous section. The tensors have the following
representations:

Ijqip = 2
15
Ir1 [δjqδip − 1

4
(δjiδqp + δjpδiq)],

Ijq = 1
3
Ir1 δjq.

Inserting these expressions into the equation for Ir2 produces an expression for the two-
point acceleration correlation integral in terms of the two-point velocity correlation
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integrals: Ir2 = 1
30
Ir1 [13S2 + 15W 2 ], and the rapid-pressure variance becomes

〈◦p◦p〉r = 1
15

1
30

[3S2 + 5W 2] [13S2 + 15W 2 ] Ir1`
2 2

3
k. (73)

Substituting ` = α(2k/3)3/2/ε, and inserting into γ2〈dd〉1 = 〈◦p◦p〉 which is related to

the local dilatational dissipation by εrc1 = 4
3
ν〈dd〉1 = 〈◦p◦p〉 produces

εrc1 =
(

1
15

)2 ( 2
3

)5 M4
t

Rt
εs [3Ŝ

2
+ 5Ŵ

2
] [13Ŝ

2
+ 15Ŵ

2
] α2Ir1 (74)

after accounting for the non-dimensionalizations employed.
An expression for the fourth-order moment, 〈vpp,p vqp,q 〉, appearing in 〈dd〉2 is now

sought. In a previous section it was seen that under the quasi-normal and isotropic
approximations 〈vpp,p vqp,q 〉 = − 2

3
k〈pp〉,qq . The Green’s function method produces

〈pp′〉,jj = 4Vi,j Vp,q
−1

4π

∫
〈vjv′q〉,ip

d3r′

|r − r′| = 4Vi,j Vp,q Ijqip(r). (75)

The biharmonic equation for the pressure variance from the previous section has
been used. Following the usual procedures with Ijqip = Ar3 [δjqδip − 1

4
(δjiδqp + δjpδiq)]

produces

〈pp〉,jj = 2
15

2
3
k [3S2 + 5W 2]Ir3 , (76)

where

Ar3 = 2
15
Ijjii = 2

15
2
3
kIr3 . (77)

Using the facts that 〈vjv′j〉 = 2
3
k[rf′+3f] = r−2(d/dr)(r3f) and ∇2 = r−2(d/dr)r2(d/dr)

produces Ir3 = −
∫ ∞

0
ξ2f′′′ + 7ξf′′ + 8f′ dξ. Reflection on the integrand will show that

it is suitable for application of Gauss’s theorem: the exact result is Ijjii = 〈vjvj〉 =
2
3
k3f(0) and Ir3 = 3. The fourth-order moment becomes

〈vpp,p vqp,q 〉 = − 2
3
k〈pp〉,qq = 2

15
( 2

3
k)2 [3S2 + 5W 2]Ir3 (78)

and thus

〈dd〉2 = 2
15
M4

t [3S2 + 5W 2]Ir3 , (79)

which allows the second portion of the rapid dilatational dissipation to be expressed
as

εrc2 = 3
5
( 2

3
)5 M

4
t

Rt
εs Ŝ

2
[3 + 5R2] Ir3 , (80)

where R2 = Ŵ
2
/Ŝ

2
. The rapid portion of the dilatation dissipation can be written as

the sum εrc = εrc1 + εrc2 and thus

εrc = ( 2
3
)5 M

4
t

Rt
εs Ŝ

2
[3 + 5R2][ 3

5
Ir3 + ( 1

15
)2[13Ŝ

2
+ 15Ŵ

2
] α2 Ir1]. (81)

This concludes the analytical development for the expressions for the local dilatational
covariances.

3.5. Summary of the results of the analysis

As has been shown the pressure–dilatation covariance is a sum of two terms, 〈pd〉 =
〈pd〉s + 〈pd〉r where

〈pd〉s = − 2
3
Is1

D

Dt
[ρ̄M2

t k], (82)
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〈pd〉r = − 1
30

( 2
3
)3Ir1 α

2 D

Dt
[ρ̄kM2

t Ŝ
2
[3 + 5R2]]. (83)

Additional analysis is required to produce the final form of the pressure–dilatation.

If the relative time scale is defined as T = [3Ŝ
2

+ 5Ŵ
2
], then

〈pd〉 ∼ −Ipd
D

Dt
[ρ̄kM2

t ]− Irpd
D

Dt
[ρ̄k M2

t T]. (84)

Definitions of Irpd and Ipd are given in the Appendix. Using the fact that k/(cvT ) =
3
2
M2

t γ(γ − 1) allows the derivative of the Mach number to be eliminated in favour of
derivatives of T and k:

◦
M2

t = M2
t

[ ◦
k

k
−

◦
T

T

]
, (85)

and the expression for the pressure–dilatation becomes

〈pd〉 ∼ −Ipdρ̄M2
t k

[
2

◦
k

k
−

◦
T

T

]
− Irpdρ̄k M2

t

◦
T. (86)

Inserting the evolution equations for T and k into the right-hand side produces the
final and almost algebraic expression for the pressure–dilatation

〈pd〉 = −χpdM2
t [ρ̄Pk − ρ̄ε+ Tk − 3

4
M2

t γ(γ − 1)(PT + ρ̄ε+ TT )]− ρ̄k M2
t χ

r
pd

◦
T. (87)

The differential due to the streamwise adjustment of the relative strain,
◦
T, remains.

Here ε stands for the combined solenoidal and compressible contributions to the
dissipation. The χpd coefficients are thus functions of the turbulent Mach number,
M2

t , and the relative strain and rotation rates, Sk/ε, Wk/ε and the Kolmogorov
scaling parameter, α. The details are given in the Appendix.

The local dilatational dissipation is composed of a slow and a rapid part: εc = εrc+ε
s
c

where

εsc =
16

3α2

M4
t

Rt
εs [Is2 + 6Is1I

s
3], (88)

εrc = ( 2
3
)5 M

4
t Ŝ

2

Rt
εs [3 + 5R2][ 3

5
Ir3 + ( 1

15
Ŝ )2[13 + 15R2] α2 Ir1], (89)

where R2 = W 2/S2 is the mean rotation to strain ratio; R = 1 for a pure shear. The
constants Ii and α are flow-specific quantities: however, they are fully specified by
their mathematical definition and can be measured in a specified flow; they are not
empirical factors that need to be adjusted to match model calculations to experimental
data.

Except for two empirically justified phenomenological assumptions the results
presented above are a mathematical consequence of the scaling that led to the
diagnostic relationship: −γd = p,t +vpp,p. The phenomenological assumptions invoked
are (i) quasi-normal behaviour of the large scales and (ii) the Kolmogorov relationship.
With these qualifications in mind the expressions derived are mathematically exact.
These results must be understood as leading-order contributions to the dilatational
covariances. Higher-order terms scale with the anisotropy, bij .



Dilatational covariances in compressible turbulence 55

4. Implications of the results
4.1. The local dilatational dissipation

Immediately apparent, in the light of other models for the compressible dissipation,
is its dependence on mean flow gradients, the Reynolds number and the Kolmogorov
scaling coefficient. The Mach number dependence, M4

t is stronger than the M2
t

dependence in the Sarkar model for the dilatational dissipation, though less steep,
for small Mt, than the exponential dependence of Zeman’s (1993) model. (It should
be kept in mind, as will be discussed shortly and in §5, that Sarkar treats a different
problem.)

Reynolds number dependence of the dilatational dissipation

While the dilatational dissipation has been expressed in terms of Mt and Rt, it is
useful to consider the fact that M4

t /Rt = νεs/c
4 which implies that

εc ∼
ν

c4
ε2s , εc ∼

ν

c4

[
Ŝ

2
+ Ŝ

4
]
ε2s . (90)

It is seen that the local dilatational dissipation’s dependence on the turbulent Mach
number is through its dependence on temperature and not kinetic energy. In Blaisdell’s
homogeneous shear DNS the quantity χε = εc/(εs + εc) becomes independent of Mt

(for Mt > 0.15) even though Mt continues to grow; the above scaling is consistent
with this feature. It should be noted that the substitution ε ∼ ũ3/` recovers a Mt

dependence.
The analysis has produced a representation for the local dilatational dissipation

that depends on Reynolds number. The magnitude of the dilatational dissipation
depends on the viscosity: for a fixed Mt, the local dilatational dissipation vanishes as
Rt →∞. For M2

t < 1 it appears that the usual interpretation of dissipation quantities
as spectral fluxes is not appropriate. That the compressible dissipation might not be
interpreted as a spectral flux (as is the solenoidal dissipation) is suggested by results
given in the EDQNM of Bataille (1994). In Bataille’s (1994) simulation the solenoidal
spectrum, Ess, is found to scale as the usual κ−5/3; the compressible spectrum, for
small Mach number, is much steeper and scales as Ecc ∼ κ−11/3. Multiplying by
κ2, the solenoidal and dilatational dissipations are found to scale as κ1/3 and κ−5/3,
respectively. The negative power law scaling of the local dilatational dissipation
indicates that, unlike the enstrophy, the dilatation is smaller at larger wavenumber.

Consider an approximate spectral Mach number, M2
t (κ) ∼ E(κ)κ/c2. Using the

incompressible spectrum (as the compressible spectrum falls off faster) produces
Mt (κ) ∼ κ−1/3. This suggests that the local dilatational dissipation is a result of
a competition between effects that are important at different scales: the energy in
the fluctuating dilatation at the larger scales and the sharp gradients necessary for
viscous dissipation at the small scales. This is consistent with the idea that, for fixed
Mt, increasing Rt by decreasing the viscosity adds more small scales to the field that
are also more divergence free. The length scales at which the velocity gradients are
large enough to undergo viscous dissipation become smaller and simultaneously more
divergence free; a net reduction of the dilatational dissipation results.

This effect is not expected to be seen in current DNS turbulence in which there is no
unambiguous spectral gap: the small scales of the motion are almost as compressible
as the large scales of the motion. For the compressible homogeneous DNS typically
Rt = 4k2/9ε〈ν〉 < 100. A spectral gap is typically not seen until Rt > 103. Attention
might be drawn to the results of the numerical experiments of Blaisdell & Zeman
(1992) in which the dilatational dissipation was found to be associated with what are
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identified as large-scale acoustic waves. Note also the scalings for the compressible
dissipation recently observed in LES by Shao, Fauchet & Bertogio (1996) at Lyon:
they have observed that εc ∼M4

t /Rt, as is derived here and in Ristorcelli (1995).

Gradient Mach number

Sarkar (1995) has found a dependence of the effects of compressibility on what
is called a gradient Mach number: Mg = S`/c. This dependence is not new; it
has been noted in the RDT analyses of Durbin & Zeman (1992), Cambon et al.
(1993) and Simone et al. (1997). The gradient Mach number can be thought of as
a local convective Mach number, Mc = (U1 − U2)/(a1 + a2), as is typically used to
parameterize the compressible mixing layer.

For an arbitrary three-dimensional flow the dependence on the gradient Mach
number can be replaced with a mean strain (or distortion, Simone et al. 1997)
Mach number and R2 = W 2/S2. A mean strain Mach number can be defined as

S`/c = 2
3
α(Sk/εs)Mt ' 2

3
ŜMt = MS . The strain Mach numbers highlight the sensitivity

that compressible flows have to velocity gradients as manifest in the so-called rapid
portion of the dilatational covariances,

εrc ∼
M2

t M
2
S

Rt
εs [3 + 5R2]

[
3
5
Ir3 +

(
1
15
Ŝ
)2

[13 + 15R2] α2 Ir1

]
; (91)

for a sheared flow the dilatational dissipation is proportional to the gradient Mach
number to the second and fourth powers. Here R2 = W 2/R2.

Though Sarkar’s (1995) subject is the changes in the anisotropy of the turbulence
due to compressibility his arguments are applicable to both the dilatational covari-
ances. Sarkar’s (1995) arguments indicate that the effects of compressibility are much
larger in the mixing layer than in the equilibrium boundary layer: the mixing layer
is stabilized with respect to the boundary layer by compressibility. The difference
between the compressible mixing layer and the boundary layer flow is parameterized
by the gradient Mach number, Mg . In Sarkar’s (1995) examples, Mg (proportional
to MS ) for the mixing layer can be an order of magnitude larger than that for the
boundary layer. The same reasoning using the mean gradient Mach number applied
to the dilatational dissipation indicates that compressibility dissipation effects are
substantially more important for the mixing layer than for the wall layer. Using
Sarkar’s (1995) values and definition of the gradient Mach numbers, Mg ∼ 6 in his
example of a mixing layer while in the boundary layer Mg ∼ 1 and the effects of the
compressible dilatation are an order 62 more important in the mixing layer than in
the boundary layer.

The importance of the dilatational terms is difficult to assess a priori; scaling, as
they do, with M4

t and R−1
t suggests that they are negligible. This is certainly true

for the slow compressible dissipation; and is likely to be the case for the rapid
portion. There is a possibility that for say Sk/ε � 10 the dilatational dissipation’s
dependence on M4

t might be compensated for by the (Sk/εs)
4 behaviour. In general

the analysis shows for typical Sk/ε ∼ 6 that εrc � εsc and both are small. This is
consistent with recent results of Vreman et al. (1996) and Simone et al. (1997). This
is not the case for the homogeneous shear of Blaisdell (1996). In Blaisdell’s flow the
dilatational dissipation is in the range of 5–10% of the solenoidal dissipation. The
Reynolds number is low and the M4

t dependence may well be compensated for by
the dependence on (Sk/εs)

4.
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4.2. The pressure–dilatation

In this subsection the results for the pressure–dilatation are discussed. Comparisons
to the physical behaviour seen in diverse prototypical flows are made.

Increased inertia

The role of the pressure–dilatation, as an agency of transfer between internal
and kinetic modes of energy, appears to have first been noticed by Zeman (1991)
and explored further in homogeneous shear DNS by Sarkar et al. (1991a). With a
simple rearrangement, the pressure–dilatation expressions can be seen to increase the
turbulence’s inertia. Earlier the pressure–dilatation covariance was written in terms
of the advective derivative. By expanding those differentials the expression for 〈pd〉
can be rearranged in the

◦
k equation to produce terms representing an ‘added mass’

effect and two additional source terms:

[1 + IpdM
2
t ] ρ̄

D

Dt
k = ρ̄Pk − ρ̄ε− k Ipd

D

Dt
[ρ̄M2

t ]− ρ̄k M2
t I

r
pd

D

Dt
T.

As Ipd scales with (Sk/εs)
2 the added mass effect scales with the square of the gradient

Mach number M2
g ∼M2

t (Sk/εs)
2. The faster the turbulence is sheared the more work

it takes to change the energy of a mean fluid particle.

The isotropic decay

The pressure–dilatation covariance in isotropic (decaying) turbulence is

〈pd〉 = χpdM
2
t ε+ O(M4

t ). (92)

The pressure–dilatation is positive indicating a net transfer of energy from the mean

temperature to the turbulence. The
◦
T and

◦
k equations for this case are written

− cv
D

Dt
T =

D

Dt
k = −(1− χpdM2

t )ε. (93)

The factor multiplying the dissipation is always positive, 1−χpdM2
t > 0. The pressure–

dilatation will act to slow the rate of decrease of k by shunting energy stored in the
mean temperature to the kinetic energy of the turbulence. Sarkar et al. (1991b) have
assumed (−〈pd〉+ εc = α1M

2
t εs) and the turbulence energy equation can be rewritten

D

Dt
k = 〈pd〉 − ρ̄εs − ρ̄εc = −(1 + α1M

2
t )εs. (94)

The results of the present analysis and Sarkar et al. (1991b) are not contradictory:
they treat two different problems. The present analysis treats turbulence in which
compressible effects are generated by the turbulent motions. Sarkar et al. (1991b)
appears to have treated homogeneous non-compact turbulence on which is superposed,
by the initial conditions, an M2

t dilatational wave field. The local dilatational field is
an order-M4

t effect when the dilational fluctuations are generated, not by the initial
conditions, but by the vortical fluctuations.

4.2.1. Scaling the pressure–dilatation: the isotropic decay

For the isotropic decay the expression for the pressure–dilatation can be rearranged:

〈pd〉
M2

t εs
= χpd =

4
3
Is1

1 + 4
3
Is1M

2
t

. (95)
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Figure 2. Scaled pressure–dilatation in isotropic decaying turbulence.

Terms of order M4
t have been dropped. Earlier estimates given in Ristorcelli (1995),

shown above, indicate Is1 = 0.5− 0.3. The theory therefore predicts an asymptote for
χpd as the turbulent Mach number vanishes:

χpd =
4
3
Is1

1 + 4
3
Is1M

2
t

→ 0.666− 0.40 as M2
t → 0. (96)

The agreement with the DNS shown in figure 2 is very good – the scaling asymptotes
in the range suggested in Ristorcelli (1995) as the initial conditions fade. It appears
that the analysis without any a posteriori adjustment of constants has been verified.
The DNS results, shown in figure 2, were provided by Blaisdell for three different initial
turbulent Mach numbers. They are recent compressible DNS reflecting a consistent
set of initial conditions described in Ristorcelli & Blaisdell (1997). As a service to the
reader the figure includes two definitions of the turbulent Mach number: that used by
Blaisdell in his simulations, Mb

t , and that which comes from the perturbation theory
given here.

The pressure–dilatation in homogeneous shear

The perturbation expansion constructed earlier allows an interesting connection
with the results of Sarkar (1992). In primitive variables 〈pd〉 = 〈(p1 + ε2p2 + ...)(d +
ε2....)〉 = 〈p1d〉 + O(M2

t ) is a statement that the primary (averaged) contribution to
the pressure–dilatation is from the incompressible pressure, p1. This is consistent
with Sarkar’s (1992) homogeneous shear DNS. He identifies compressible and in-
compressible pressure fields and compares their contributions to the time-averaged
pressure–dilatation. He finds quite conclusively that the most important cumulative
contribution to the pressure–dilatation is made by the incompressible pressure.

Consider the following lowest-order simplification of 〈pd〉 (assuming
◦
T ' 0 the

pressure–dilatation can be written 〈pd〉 = −χpdM2
t [Pk − ε− 3

4
M2

t γ(γ − 1)ε]):

〈pd〉 = −χpdM2
t [Pk − ε]. (97)
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Several items are worth noting. The pressure–dilatation will only alter the turbulence
in situations when Pk 6= ε. The effect will be controlled by M2

t and (Sk/ε)2 (see the
definition of χpd in the Appendix). The non-dimensional quantity M2

t (Sk/εs)
2 has

been related to a gradient Mach number; the larger the gradient Mach number the
larger the pressure–dilatation effect (if Pk 6= ε). It should noted that Vreman et al.
(1996) find pressure–dilatation negligible and for good reason: their flow is stationary.
The pressure dilatation is zero for stationary flows in which Pk = ε or equivalently
(D/Dt)k = 0, (see equation (17) of Vreman et al. 1996).

Also worth noting is the change of sign of 〈pd〉 noted by Sarkar et al. (1991a) and
by Blaisdell et al. (1991). For flows with small turbulence production, Pk < ε, the
pressure–dilatation is positive and ‘destabilizing’. Clearly, if the production exceeds the
dissipation the pressure–dilatation covariance is negative and ‘stabilizing” and a net
transfer of energy from the turbulence field to the mean internal energy occurs. The
pressure–dilatation can be either stabilizing or destabilizing and this effect is amplified
by the gradient Mach number. A similar phenomena is seen in the results of Simone
et al. (1997) in the context of their discussion on the stabilizing or destabilizing effects
of the gradient Mach number on b12. Their simulations start with isotropic initial
conditions for which, of course, the production is zero. The short-time results for their
DNS indicate that larger gradient Mach numbers are associated with larger values of
b12, i.e. the gradient Mach number is destabilizing. As the simulation continues further
the larger gradient Mach number simulations become stabilized with respect to the
smaller gradient Mach number flows, thus Sarkar’s (1995) conclusion follows. This is
very similar to the behaviour seen in the pseudo-sound expressions for 〈pd〉 where the
stabilizing/destabilizing effect is determined by the relative size of Pk/ε. One might
speculate that the different behaviours in the Simone et al. (1997) simulation might
be correlated with the sign of Pk/ε− 1.

The critical M2
tc, as a function of shear rate, anisotropy and ratio of specific heats,

at which the pressure–dilatation changes sign is found by setting 〈pd〉 = 0. To lowest
order

M2
tc =

4

3

1
2
b12 Ŝ − 1

γ(γ − 1)
. (98)

This approximation is only valid in flows that have achieved, consistent with the
analysis, some sort of structural equilibrium: this does not occur until St > 10 in
homogeneous shear DNS starting from isotropic initial conditions.

Scalings for the pressure–dilatation in homogeneous shear

The scalings predicted by the analytical results are now compared to recent DNS
of Blaisdell (1996, personal communication). Taking into account the definition of
the coefficients in the expression for the pressure–dilatation it is seen that

〈pd〉 ∼ −α2

(
Sk

εs

)2

M2
t εsI

r
1

[
Pk

εs
− 1

] [
1 +

1

Pk/εs − 1

D

D(St)

Sk

εs

]
. (99)

The appropriate scaled integral of 〈pd〉 will be taken. The integrals are taking following
Sarkar (1992) who showed that the major contribution to the time average of 〈pd〉
is due to the incompressible pressure; oscillatory compressible pressure fluctuations
make little contribution to time averages. The integrand will be weighted by quantities
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Figure 3. Scaled pressure–dilatation for ‘equilibrium’ homogeneous shear.

calculated by the DNS suggested in the expression above:

I0 =

∫
〈pd〉, I1 =

∫ 〈pd〉
εs

, I2 =

∫ 〈pd〉
εs[Pk/ε− 1]

,

I3 =

∫ 〈pd〉
M2

t εs[Pk/ε− 1](Sk/ε)2
, I4 =

∫ 〈pd〉
α2M2

t εs[Pk/ε− 1](Sk/ε)2
. (100)

The symbol
∫

is used to denote the operation (1/St)
∫

( )d(St). Figure 3(a) shows
the instantaneous and time-averaged values of 〈pd〉. Figure 3(b) shows the scaled
integrals of 〈pd〉 given above. The integrations shown have been taken during the
latter portions of the DNS, as this is the portion of the flow during which a semblence
of a structural equilibrium is approached. This is assessed by the approach of Ir1 to
its final value: for the last four dimensionless times Ir1 is within 25% of its final value.

It is also indicated by the substantial diminishing of the contribution of (D/Dt)Ŝ .
The averaging procedure was started at St = 9 and all values are normalized by their
value at St = 10. The period St = 10 to St = 16 is equivalent to little less than one
and a half eddy turnovers.

It is seen that the scaling, in I3, M
2
t εs[Pk/ε − 1](Sk/ε)2, featuring as it does the

gradient Mach number, exceeds the collapse expected. It had been originally thought
that the quantity M2

t εs[Pk/ε − 1](Sk/ε)2 would collapse the data – the Kolmogorov
coefficient had been expected to be approximately constant as is seen in many flows
(Sreenivasan 1995; Yeung & Zhou 1997). This is not the case for the Blaisdell DNS
data – homogeneous shears are non-equilibrium flows. The Kolmogorov coefficient
drops substantially towards the end of the simulation to what may be considered
its ‘typical’ value, α ≈ 1. When the Kolmogorov scaling coefficient, taken from the
DNS, is accounted for the collapse is very good. This point is made to emphasize
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Figure 4. Scaled pressure–dilatation for ‘non-equilibrium’ homogeneous shear.

the inadequacy of the present data on the Kolmogorov coefficient for more complex
flows. It is also, perhaps, an adumbration of the potential role this quantity may play
in compressible turbulence.

The scalings were also checked during the earlier non-equilibrium portion of the
flow, where Ir1 is not constant; its value is computed from the DNS data. This
calculation, shown in figure 4, was performed starting at St = 5, to allow some
consequences of the isotropic initial condition to dissipate and to ensure that Pk/ε > 1
to avoid the singularity in the denominator. Here

I0 =

∫
〈pd〉, I3 =

∫ 〈pd〉
M2

t εs[Pk/ε− 1](Sk/ε)2
, I4 =

∫ 〈pd〉
α2Ir1M

2
t εs[Pk/ε− 1](Sk/ε)2

.

(101)

The collapse of the data is substantial over such a large time span. It is possible to
write considerably more on these comparisons with DNS. These results are treated
in more detail in Ristorcelli (1997).

5. Discussion and clarification of limitations and assumptions
In order to make the mathematical development possible it has been necessary to

make simplifying assumptions. This section is a compilation of the assumptions used;
the complexity of the analysis may have obscured the reasonableness or inadequacy of
the assumptions. The section is also included in order to ensure that the applications of
these representations be made with an awareness of their limitations. It is hoped that
discussion of the assumptions will suggest future work to account for the potential
shortcomings of this one.
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Low turbulent Mach number

The square of the turbulent Mach number, M2
t = 2

3
k/c2, has been assumed to be

small. This is the case for many supersonic flows of engineering interest. The low
turbulent Mach number squared assumption should not be understood to imply a low
mean flow Mach number. It is a statement quantifying the modest compressibility of
the fluctuating velocity field.

While a low-M2
t analysis is expected to be appropriate for most flows of aero-

dynamic interest, it must be noted that the nonlinear self-interaction terms of the
compressible velocity field, necessary for a compressible cascade, are absent in this
analysis (they are negligible). As Mt → 1 nonlinear terms and shocklets are expected
to become important. The present article has no relevance to flows in which shocklets
are a major portion of the dissipation. Bataille’s (1994) EDQNM results show that
as Mt increases the slope of Ecc decreases; as Mt → 1, the slope of Ecc approaches
the slope of Ess indicating the existence of a compressible cascade and the dilata-
tional dissipation has positive exponent in wave space. In that limit the compressible
dissipation is not expected to be a function of Reynolds number. A compressible
nonlinear cascade is not expected to be important in most supersonic flows and
cannot be accounted for in this analysis. On this point consider the homogeneous
shear in Blaisdell et al. (1991, 1993) discussed in Blaisdell & Zeman (1992): shock-
lets, for moderate turbulent Mach numbers, contribute very little to the dilatational
dissipation.

Compact source

The low-Mt assumption is equivalent to the compact source assumption of aero-
acoustics. In acoustics there is a source compactness parameter: ωc`/c, where ωc
is a characteristic frequency of the acoustic radiation. Applying this measure of
compactness to the present situation, it is found that the source compactness is
proportional to the turbulent Mach number, ωc`/c ∼ ε`/kc ∼ Mt – the correlation
length scale of the flow structures producing the dilatational field is smaller than the
wavelength of the propagating field.

Compact flow

The scalings employed imply that the source of compressibility at any point in
the turbulence is due to the turbulence within an integral scale of that location.
The compressible effects do not result from any externally imposed ‘acoustical’ fields,
or radiation from far-field turbulence; nor are they an adjustment of the flow to
initial conditions with an arbitrary compressible component not generated by the
turbulence. This combined problem has been investigated in Durbin & Zeman (1992).

Homogeneous compressible DNS is not a compact flow. Homogeneous DNS
correspond to turbulence immersed in a general background random wave field due
to inconsistent initial conditions as well as non-local contributions to the variances of
propagating fields such as 〈dd〉. The model problem treated by Sarkar et al. (1991b)
appears to have addressed turbulence of scale ` irradiated by an infinite external
acoustic field generated by turbulence whose statistics are the same as those of the
local turbulent region.

Kolmogorov scaling

The Kolmogorov scaling relation, ε = α( 2
3
k)3/2/`, has been used several times.

The scaling has substantial empirical validity in many isotropic incompressible flows
with different large-scale forcings (Yeung & Zhou 1997; Sreenivasan 1984). However,
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in non-ideal flows that are strained, anisotropic or inhomogeneous α cannot be
thought of as a universal constant. The scaling ε ∼ ( 2

3
k)3/2/` is nonetheless a useful

approximation in many high Reynolds number flows (Sreenivasan 1995a): this is to
be expected as the scaling comes from spectral arguments in ranges of the cascade in
which the fluctuating strain is large enough to be reasonably insensitive to the smaller
strain associated with the mean deformation. This, of course, is not the case for
rapidly distorted flows in which a spectral equilibrium, the assumption that underlies
the Kolmogorov scaling, will not exist. In such rapidly distorted flows the mean strain
is higher than the fluctuating strain for a sizable portion of the inertial subrange.
In most high Reynolds number flows of the transversely sheared type, nonlinearities
develop rapidly and the turbulence adjusts to imposed strains rapidly producing more
nominal values of the relative strain parameter, Sk/εs; only a small portion of the
flow domain corresponds to a flow situation in which a scaling of the type ε ∼ ũ3/`
can be argued to be inadequate.

Sreenivasan (1995a) has assessed the accuracy of the Kolmogorov scaling relation
in several canonical (incompressible) simple shear flows. For homogeneous shear
the data indicate α ∼ 1–2. For the log layer or wake flows α ∼ 4. The crucial
point is that α is a flow-specific quantity; even in the homogeneous DNS α can
vary significantly during the course of the simulation (Rogers, Moin & Reynolds
1986; Blaisdell 1996, personal communication). There appears to be very little known
about the scaling coefficient in non-ideal flows. Some sort of parameterization for
flows in structural equilibrium appears possible (Sreenivasan 1995a). Nonetheless the
coefficient α is a defined quantity, and is measurable in the class of flows of interest.
As has been mentioned its appearance, in as much as it links dimensionally and
phenomenologically, the energy, the spectral flux and a two-point correlation length
scale, is a measurable indication of the dependence on large scales.

Quasi-homogeneity

The assumption of ‘quasi-homogeneity’ is made throughout the mathematical de-
velopment: this is an assumption of homogeneity on the scale ` which is to say `/L〈1
where L is the scale of the inhomogeneity. One of the reviewers has pointed out that
the analysis also presumes quasi-homogeneity in time of the mean strain. This comes
from the fact that, a unlike an incompressible homogeneous flow, a homogeneous
compressible flow does not allow a steady arbitrary strain (except for pure shear):
thus a stationary mean assumption violates strict homogeneity for a compressible
mean flow. The analysis therefore holds for flows in which (i) the mean flow is homo-

geneous and quasi-stationary on the time scale of the turbulence S−1
◦
S k/εs < 1 or

(ii) the mean flow is stationary in time but quasi-homogeneous in space. Additional
details on the use of homogeneity in compressible DNS can be found in Blaisdell et
al. (1991, Chapter 2 and Appendix A).

The mean pressure and mean density (and thus sound speed) have been assumed
locally constant – constant over a length scale over which the turbulence is correlated.
The locally constant mean density assumption implies that the mean bulk dilatation
is negligible. For flows in which the mean density and mean pressure vary appreciably
over an integral scale the present representation captures only a portion of the physics.

In the constitutive relation for the pressure dilatation the flux terms 〈vkpp〉,k have
been neglected on the grounds of homogeneity (or because they are triple moments).
It should be observed that where the flux terms are important typically coincides with
regions in which production is not important and thus M2

t is small.
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Isotropy

All the expressions presented have been obtained assuming that the leading-order
contribution to various two-point integrals, which are integrals over ellipsoids, can
be approximated by integrals over a sphere of the same volume. The problem is
otherwise, without resorting to empiricism, intractable. The resulting expressions are
thus leading-order terms in a series expansion in powers of the anisotropy of the
turbulence. The substance of such a procedure for those unfamiliar with such a style
of thinking can most easily be seen in Shih, Reynolds & Mansour (1990) where it is
carried out in the Fourier domain or in Lumley (1970).

Higher-order terms allowing contributions from the anisotropy are straightforward
in concept but intractable without empiricism. For unstrained flows their contribu-
tions will be nominal, on the order of the scalar M2

t ‖b2‖, since 〈pd〉 is scalar. In
homogeneous shear flows 1

2
‖b2‖ ∼ 0.058 is also small. This argument is however, not

appropriate for strained flows; there will be second-order terms, b(∇V )2, which, it can
be argued, should be small. Some amplification of this point, using the rapid portion
of the pressure–dilatation, is now given. Consider the leading order contribution to
the pressure variance derived above: 〈pp〉r = 1

15
ρ2
∞

2
3
k`2 [3S2 + 5W 2] Ir1. The next

higher-order terms, in a small-anisotropy expansion, contribute terms of the form
Vi,j Vp,q bjq . Expressing the velocity gradient in terms of strain and rotation produces
an expression of the form

〈pp〉r ∼ C0[3S
2 + 5W 2] + C1bij[S

2
ij +W 2

ij] + C2bij[SikWkj + SjkWki]. (102)

Such a form has also been given in Durbin & Zeman (1992) using the usual tensor
representation arguments. They obtained values for C0 and C1 appropriate for the
small-time behaviour of rapidly distorted flows. In flows for which nonlinear effects
play a primary roll, as they will in any flow that evolves an eddy turnover time
or so away from its initial condition, the present procedure gives a value for C0.
The procedure cannot predict values for C1 or C2 without empiricism. Certainly
calibration can produce constant values for these quantities. For simple shear flows
W ∼ S and the scaling of higher-order terms is also S2 – thus the successful collapse
of the DNS data. For highly anisotropic flows with rapidly changing bij the scaling
will be less exact and this issue may have to be investigated more closely in order to
construct. Given the modest contributions of 〈pd〉 and the small contribution of εc
these issues do not appear to warrant further attention. This generalization, however,
must be qualified: there are a wide variety special strategies to enhance mixing and
these effects may not be negligible in a wider class of flows.

Quasi-normality

The assumption of quasi-normality for the large scales of the flow has been made
to achieve closure. The quasi-normal assumption for the dynamically significant
large scales of a flow is an exceedingly good approximation in both homogeneous
and inhomogeneous flows. The adequacy of the quasi-normal assumption has been
investigated for several decades now. Batchelor (1951, 1953) appears to have been
the first to have presented experimental evidence of its adequacy when invoked
with respect to the large scales of the flow. A spectral version of this assumption
is used in the EDQNM theory which since its inception, as presented in Orszag
(1970), has produced useful results. The adequacy of the assumption for the large
scales of the flow has been documented in several experimental works – McComb
(1990) gives a summary of these results. Even in inhomogeneous compressible flows,
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Elliot & Samimy (1990) have found that the quasi-normal assumption is valid in the
dynamically significant central portions of the mixing layer where the turbulent Mach
number is largest.

In the quasi-normal approximation, the term 〈ṗvqp,q 〉 has been dropped from the
constitutive relation for the variance of the dilatation. In as much as the dilatational
variances are a small contribution to the overall energy levels of weakly compressible
flows, this term has not been retained. The more important pressure–dilatation term
does not suffer from any such approximation.

Isentropy

The turbulent fluctuations that contribute to the dilatational covariances have
been assumed to obey the adiabatic gas law. This uncouples the problem from non-
isentropic aspects of a compressible flow which are expected to be important in
wall-bounded flows under non-adiabatic conditions.

Viscous effects

In some of the manipulations involving the acceleration, the quantity (−p,i−vkvi,k )

has been used to replace the acceleration,
◦
vi – viscous effects are neglected. In general

one would expect viscous effects on the acceleration to be important. This would be
expected if it were the small scales that contributed to the dilatation in low-Mt flows
– in the same way it is the small scales that contribute to the enstrophy. However, in
the absence of shocklets, viscous effects on the scales of the motion that contribute
to the dilatation in higher Reynolds number flows are neglected.

Initial conditions

In compressible DNS appropriate initial conditions are required: the leading-order
low Mach number expansion indicates that the density and temperature variances
are related to the incompressible field according to γ〈ρρ〉 = γ/(γ − 1)〈θθ〉 = 〈pp〉.
The so called ‘incompressible’ initial conditions 〈θθ〉 = 〈ρρ〉 = 0 are inconsistent with
finite initial Mt. Whether this is important or not and how long its effects will last
before being obscured by the coupling between the dilatational and vortical fields
(Blaisdell, Mansour & Reynolds 1993), is sure to depend on the particular situation.
These speculations about the appropriateness of initial conditions (Ristorcelli 1995),
and their impact on interpretation of DNS data have begun to be substantiated in
Ristorcelli & Blaisdell (1997). The initial condition transients in the compressible DNS
are analogous to the transients associated with the free oscillations of an underdamped
linear system, y′′+Re−1

c y
′+ω2

0y = 0, relaxing from its initial condition. This situation
appears to correspond to the analysis followed by Erlebacher et al. (1990) and Sarkar
et al. (1991b). In this article the treatment for the effects of compressibility can be
thought of as analogous to the forced oscillator: y′′+Re−1

c y
′+ω2

0y = f(ωt). The forcing
comes from the energy-containing turbulent motions on the time scale ωt ∼ `/ũ and
the dependence on the initial conditions is assumed to have faded.

6. Summary and conclusions
A small M2

t = 2
3
k/c2 perturbation procedure has produced a diagnostic constitutive

relationship, −γd = p,t + vkp,k , relating the fluctuating dilatation to the pressure
field associated with the solenoidal portions of the velocity field. Moments of the
diagnostic relation then produce constitutive relations for the dilatational covariances.
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Application of the methods of statistical fluid mechanics and the assumptions of quasi-
homogeneity and retaining only leading-order isotropic portions of the two-point
integrals produces expressions for the covariances with the fluctuating dilatation.
Except for the well-established Kolmogorov scaling, ` ∼ ( 2

3
k)3/2/εs, and the quasi-

normal assumption, no additional phenomenological assumptions are made. The
analysis is, in the low-M2

t limit, exact and produces representations for the effects of
compressibility in which there are no undefined constants.

The present analysis treats only the ‘scalar’ effects of compressibility – the reduction
in k through the dilatational covariances in the energy budget; it cannot account
for the reduction in the shear anisotropy, b12, or the normal anisotropy, b22, so
important to the production mechanism for the shear stress, 〈v1v2〉. To account for
these more substantial structural effects appears to require a compressible pressure–
strain representation accounting for the effects of compressibility. This has been
indicated in Blaisdell & Sarkar (1992), Vreman et al. (1996), Simone et al. (1997).

This article has focused primarily on producing and understanding the mathemat-
ical consequences of a few assumptions associated with small M2

t . As a perturbative
procedure it will express the effects of compressibility in term of the underlying
solenoidal velocity field about which much is known. The expressions obtained may
be viewed as the leading-order term in a more general expression in which successive
terms scale with the anisotropy and inhomogeneity of the flow. The comparisons with
the DNS are excellent and show an excellent collapse of the data without use of empir-
ical constants. While a comprehensive validation of the present analysis is not the sub-
ject of this article, see Ristorcelli (1997), the procedure has been corroborated by the
DNS and now more difficult structural aspects of compressibility might be addressed.

Some findings are now summarized:
(i) The pressure–dilatation is found to be a non-equilibrium phenomena. It scales

as M2
t (Sk/εs)

2[Pk/εs − 1]. For it to be important requires both the square of the
gradient Mach number, M2

S , to be non-negligible and Pk 6= ε. In as much as the
pressure–dilatation can be either positive or negative its dependence on the gradient
Mach number indicates that the gradient Mach number can be either stabilizing or
destabilizing. These predictions are consistent with the DNS of Simone et al. (1997)
who observe such behaviour as related to the anisotropy, b12.

(ii) Both the dilatational covariances are functions of the Kolmogorov scaling
coefficient; this is expected to be an important feature in models for compressible
flows. The Kolmogorov coefficient is a flow-dependent quantity: there is little known
about its dependence in non-ideal – anisotropic, strained, inhomogeneous – flow
situations. The appearance of the Kolmogorov coefficient, in as much as it links the
energy, the spectral flux and a two-point length scale, is an indication of dependence
on large-scale structure.

(iii) For high-Rt, low-M2
t , non-equilibrium flows the dilatational dissipation is found

to be less important than the pressure–dilatation. It is found to be a function of the
relative strain rate and the solenoidal dissipation scaling as M4

t (Sk/εs)
4R−1

t .
(iv) The dilatation dissipation is dependent on the viscosity: for fixed Mt, as

Rt →∞, the local dilatational dissipation vanishes. The compressible dilatation cannot
be understood as a spectral cascade rate set by the large scales. The dependence on the
Reynolds number suggests that assessing the importance of the dilatational dissipation
on the basis of low Reynolds number numerical simulations may be misleading when
applied to higher Reynolds number flows.

(v) The analysis also suggests results relevant to initial conditions used in the DNS
of compressible turbulence. It is seen that a finite turbulent Mach number implies
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a finite compressible component of the turbulence field. Compressible numerical
simulations starting from ‘incompressible’ initial conditions with finite Mach number
are more consistently initialized with finite initial density, temperature and dilatational
velocity fields: γ〈ρρ〉 = γ/(γ − 1)〈θθ〉 = 〈pp〉, Ristorcelli & Blaisdell (1997). It appears
that initial conditions inconsistent with the finite non-zero turbulent Mach number
associated with the incompressible field will create a spurious wave field (Ristorcelli
& Blaisdell 1997), that will attenuate slowly.
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providing the results of recent compressible DNS. Also to be acknowledged are
many discussions with Y. Zhou, S. Girimaji, G. Erlebacher, and F. Bataille. This
research was supported by the National Aeronautics and Space Administration under
NASA Contract No. NAS1-19480 while the author was in residence at the Institute
for Computer Applications in Science and Engineering (ICASE), NASA Langley
Research Center, Hampton, VA 23681-0001.

Appendix. Synopsis of the dilatational covariance representations
The analytical results are briefly summarized. The representations for the effects

of the compressible dissipation are given by the sum of the slow and rapid portions,
εc = εrc + εsc:

εsc =
16

3α2

M4
t

Rt
εs [Is2 + 6Is1I

s
3],

εrc = ( 2
3
)5 M

4
t

Rt
εs Ŝ

2
[3 + 5R2][ 3

5
Ir3 + ( 1

15
)2Ŝ

2
[13 + 15R2] α2 Ir1],

 (A 1)

where R2 = W 2/S2 is the mean rotation to strain ratio; R = 1 for a pure shear; Mt is
the turbulent Mach number, M2

t = 2
3
k/c2, where c2

∞ = γP/ρ̄ is the local sound speed.

The turbulent Reynolds number is given by Rt = ũ`/ν = 4k2/9εν using the facts
that ũ = 2k/3 and εs ∼ ũ3/`. In general ` = α(2k/3)3/2/εs . The Kolmogorov scaling
coefficient, α, is known to be a flow-specific quantity. Note that in the definition the
characteristic velocity ( 2

3
k)1/2 is used. The non-dimensional strain and rotation rates

are given by Ŝ
2

= (Sk/εs)
2, Ŵ

2
= (Wk/εs)

2 where S = (SijSij)
2 and W = (WijWij)

2.
The strain and rotation tensors are defined in analogy with the incompressible case,
i.e. traceless Sij = 1

2
[Ui,j +Uj,i− 2

3
Dδij], Wij = 1

2
[Ui,j −Uj,i ].

The full pressure–dilatation covariance is

〈pd〉 = −χpdM2
t [Pk− ρ̄ε+Tk− 3

4
M2

t γ(γ−1)(PT + ρ̄ε+TT )]− ρ̄k M2
t χ

r
pd

D

Dt
T,

χpd =
2Ipd

1 + 2IpdM
2
t + 3

2
IpdM

4
t γ(γ − 1)

,

χrpd =
Irpd

1 + 2IpdM
2
t + 3

2
IpdM

4
t γ(γ − 1)

,

Ipd = 2
3
Is1 + Irpd [3Ŝ

2
+ 5Ŵ

2
], Irpd = 1

30
( 2

3
)3 α2Ir1 .


(A 2)

Note that ε = εs + εc and T = [3Ŝ
2

+ 5Ŵ
2
]. The term inside the inner brackets is the

right-hand side of the mean temperature equation. The constants, denoted by the Ii,
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are given by integrals of the longitudinal correlation:

Is1 =

∫ ∞
0

ξf′2dξ, Is2 = −
∫ ∞

0

ξf′
[
ff′′′ +

4

ξ
ff′′ +

8

ξ
f′f′ − 4

ξ2
ff′
]

dξ,

Is3 =

∫ ∞
0

1

ξ
f′2dξ, Ir1 = 2

∫ ∞
0

ξfdξ, Ir3 = −
∫ ∞

0

ξ2f′′′ + 7ξf′′ + 8f′ dξ.

A quick of order of magnitude estimate for the integrals can be made using f = e−ξ
2π/4.

The following values are found: Is1 = 1
2
, Is2 = 41

27
π = 4.77, Is3 = 1

4
π = 0.785, Ir1 =

4/π = 1.273, Ir3 = 3. The values found from high Reynolds number wind tunnel data
are different: Is1 = 0.300, Is2 = 13.768, Is3 = 2.623, Ir1 = 1.392, Ir3 = 3 (Zhou 1995).
The values given for the integrals reflect the assumption of equilibrium isotropic
turbulence and are to be understood as suggestive of the order of magnitude that
they may have in more complex anisotropic and inhomogeneous situations.
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